Wells, A. F. (1984). In Structural Inorganic Chemistry, 5th ed. Oxford: Clarendon Press.
White, P. S., Gabe, E. J. \& Le Page, Y. (1991). Am. Crystallogr. Assoc. Annu. Meet. Abstract H06.
Wiles, D. B. \& Young, R. A. (1981). J. Appl. Cryst. 14, 149-151.
Young, R. A., Sakthivel, A. \& DeBoer, B. G. (1986). Am. Crystallogr. Assoc. Annu. Meet. Abstract No. PA10.

Acta Cryst. (1994). C50, 482-484

β-Dicobalt Pyrophosphate

Alaou El Belghitti and Ali Boukhari

Laboratoire de Chimie du Solide Appliqué, Departement de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco

Elizabeth M. Holt

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
(Received 30 July 1993; accepted 8 October 1993)

Abstract

A new high-temperature or β form of dicobalt diphosphate, $\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, has been isolated in space group $A 2 / m$ (non-standard setting of $C 2 / m$). As in other hightemperature forms of transition-metal pyrophosphates, metal atoms lie on planes in a two-dimensional hexagonal array [Co—Co distances 3.461 (4) and 3.284 (3) Å] with adjacent metal atoms linked by two O-atom bridges. Co atoms are octahedrally coordinated with axial distortions [average $\mathrm{Co}-\mathrm{O}_{\mathrm{eq}} 2.14$ (1), $\mathrm{Co}-\mathrm{O}_{\mathrm{ax}} 2.32$ (1) \AA]. The pyrophosphate groups lie along planes between metallic layers.

Comment

$\beta-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is typical of β or high-temperature transitionmetal structures $[\mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$; observed in space group C2/m (Robertson \& Calvo, 1968; Pietraszko \& Łukaszewicz, 1968; Calvo, 1968)] showing layers of metal atoms interspersed with layers of $\mathrm{P}_{2} \mathrm{O}_{7}$ groups; the metal atoms show a hexagonal disposition on the planes. Adjacent metal atoms of the hexagonal array are linked by two single-O-atom bridges and show two different intermetallic separations. Axial distortions of the octahedrally coordinated metal atoms are evident in $M-\mathrm{O}$ bond lengths. Co atoms bridged by equatorial O atoms are separated by a distance of 3.284 (3) \AA, whereas those bridges involving axial O atoms result in a $\mathrm{Co} \cdots$ Co separation of 3.461 (4) \AA (Fig. 1). Structural rearrangement on transi-
tion from the α or low-temperature form to the β form involves a minor increase in density and is most evident from observation of the hexagonal motif of the metallic plane. $\alpha-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ [space group $B 2_{1} / c$, non-standard setting of $P 2_{1} / c$, reported by Krishnamachari \& Calvo (1972), or space group $P 2_{1} / c$, from neutron data, reported by Forsyth, Wilkinson, Paster \& Wanklyn (1989)] shows a disruption of this regular hexagon with one Co \cdots Co distance of 4.228 (4) \AA and no bridging atoms across this distance (Fig. 2a). The unbridged Co atoms are fivecoordinate (square-pyramidal geometry) with a distance of 3.409 (4) \AA to a sixth (would-be bridging) O atom. The

Fig. 1. Projection view of $\beta-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{72}$. Elongated axial $\mathrm{Co}-\mathrm{O}$ distances are shown in black, Co atoms have dark shading, P atoms have light shading and O atoms are unshaded.

Fig. 2. Projection views of $\alpha-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ ($\alpha-\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is isostructural), $\alpha-$ $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (with elongated axial $\mathrm{Cu}-\mathrm{O}$ distances shown in black) and $\sigma-\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. In all three projections the P atoms have been omitted for clarity.
second Co-atom site in the unit cell shows octahedral geometry. Neither Co atom shows elongation of the $\mathrm{Co}-\mathrm{O}$ bonds. Thus the α and β forms differ in the closing of the hexagon and axial distortions. These structural changes between the α and β forms are mirrored by $\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Lukaszewicz, 1967).
Cu shows a slightly different pattern: $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ [space group C2/c (Robertson \& Calvo, 1967)] crystallizes with a single five-coordinate metal site of fivefold (square-pyramidal) coordination resulting in disruption of the symmetry of the hexagon in two places; the unbridged $\mathrm{Cu} \cdot \cdot \mathrm{Cu}$ distance is 3.869 (4) \AA (Fig. 2b). The axial Cu O distance is elongated and a potential sixth bonding O atom is at a distance of $2.947 \AA . \mathrm{Cu} \cdots \mathrm{Cu}$ distances are 3.047 (4) \AA when the bridging O atoms are equatorial to Cu and 3.313 (4) \AA when they are axial.
$\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ shows a further σ form [space group $P 2_{1} / a$ (Masse, Guitel \& Durif, 1979)] in which octahedral Ni atoms with little or no axial distortion form planes of unbroken hexagons with two different $\mathrm{Ni} \cdots \mathrm{Ni}$ distances (Fig. 2c). Two opposite sides of the hexagon show $\mathrm{Ni} \cdots \mathrm{Ni}$ distances of $3.370 \AA$, whereas the other $\mathrm{Ni} \cdots \mathrm{Ni}$ distances are $3.197 \AA$. This elongation is achieved by a small opening of the $\mathrm{Ni}-\mathrm{O}-\mathrm{Ni}$ angle from 101.27 to 104.53°.

In $\beta-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ group is in a staggered configuration (thortveitite). The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle of 180° is ordained by the positioning of the bridging O atom on a site of $2 / m$ symmetry. The high $U 22$ temperature factor of the bridging O atom, O 14 , may indicate some slight disorder in this atom's position; however, no significant satellite peaks were observed near this atom in a difference Fourier synthesis. The linear $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle has been the subject of discussion for other diphosphate complexes. For example, Stefanidis \& Nord (1984) have refined the structure of $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in a variety of space groups: $C 2 / m$, with disorder of the bridging O atom, C 2 and Cm ; they concluded the refinement in space group $C 2 / m$ to be the best. $\mathrm{P}-\mathrm{O}$ distances and angles appear normal in $\beta-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

Experimental

The synthesis of materials of the type $\mathrm{Cd}_{2-x} \mathrm{Co}_{x} \mathrm{P}_{2} \mathrm{O}_{7}$ according to the equation

$$
(1-x / 2) \mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}+(x / 2) \mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Cd}_{2-x} \mathrm{Co}_{x} \mathrm{P}_{2} \mathrm{O}_{7}
$$

led to isolation of $\beta-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Mixtures of appropriate stoichiometries were ground together, heated to 873 K , then to 1173 K for 72 h periods with intermediate grinding. Crystalline material was obtained by fusion in the presence of an excess of $\mathrm{P}_{2} \mathrm{O}_{5}$ (fusion point 1373 K) in a platinum crucible. Slow cooling ($4 \mathrm{~K} \mathrm{~h}^{-1}$ to 1173 K , then $10 \mathrm{~K} \mathrm{~h}^{-1}$ to 473 K) followed by cessation of heating of the furnace led to the formation of violet crystals $\left(\mathrm{CdCoP}_{2} \mathrm{O}_{7}\right)$, blue crystals of $\beta-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and rose-colored crystals $\left(\mathrm{Co}_{3} \mathrm{CdP}_{4} \mathrm{O}_{12}\right)$.

Crystal data

$\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$M_{r}=291.8$
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$

Monoclinic
A2/m
$a=4.524$ (2) \AA
$b=8.526$ (4) \AA
$c=6.640(3) \AA$
$\beta=102.59(3)^{\circ}$
$V=250.0(2) \AA^{3}$
$Z=2$
$D_{x}=3.876 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters from 15 reflections
$\theta=6.60-12.71^{\circ}$
$\mu=7.239 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Chunk
$0.1 \times 0.1 \times 0.1 \mathrm{~mm}$
Blue-purple

Data collection

Syntex P3 automated diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical
$T_{\text {min }}=0.78, \quad T_{\text {max }}=0.85$
382 measured reflections
382 independent reflections 254 observed reflections
[$I>3.0 \sigma(I)$]

Refinement

Refinement on F
$R=0.057$
$w R=0.073$
$S=0.98$
254 reflections
31 parameters
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.008$
$\Delta \rho_{\text {max }}=0.65$ e \AA^{-3}
$\Delta \rho_{\text {min }}=0.05 \mathrm{e}^{\AA^{-3}}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$B_{\text {eq }}$
Col	$1 / 2$	$-0.3074(2)$	0	0.98
P1	$-0.0880(8)$	$1 / 2$	$-0.2870(6)$	2.0
O11	$0.214(3)$	0	$0.369(2)$	2.4
O12	$0.728(2)$	$-0.352(1)$	$0.725(2)$	3.4
O14	0	0	0	9.8

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Col-O12 ${ }^{\text {i }}$	2.32 (1)	$\mathrm{Pl}-\mathrm{O} 11^{\text {iv }}$	1.52 (1)
Col-O11 ${ }^{\text {ii }}$	2.15 (1)	$\mathrm{P} 1-\mathrm{O} 12{ }^{\text {v }}$	1.52 (1)
Col-O12 ${ }^{\text {iii }}$	2.12 (1)	$\mathrm{Pl}-\mathrm{O} 14^{\text {iv }}$	1.551 (4)
O12 ${ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{O} 11^{\text {ii }}$	83.6 (4)	$\mathrm{Ol1} 1^{\text {vi }}-\mathrm{Col}-\mathrm{O} 12{ }^{\text {vii }}$	92.7 (3)
$\mathrm{O} 12{ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{Ol1}{ }^{\text {vi }}$	81.9 (4)	$\mathrm{O} 11^{\text {vi}}-\mathrm{Col}-\mathrm{O} 12{ }^{\text {viii }}$	83.6 (4)
O12 ${ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{O} 12^{\text {vi }}$	77.5 (4)	$\mathrm{O} 12{ }^{\text {vi }}-\mathrm{Col}-\mathrm{O} 12^{\text {vii }}$	99.8 (4)
$\mathrm{O} 12^{\mathrm{i}}$ - $\mathrm{Col}-\mathrm{O} 12{ }^{\text {vii }}$	115.4 (3)	$\mathrm{O} 12^{\text {vi }}-\mathrm{Col}-\mathrm{O} 12^{\text {viii }}$	115.4 (3)
$\mathrm{O} 12^{\mathrm{i}}-\mathrm{Col}-\mathrm{O} 12^{\text {vii }}$	161.0 (3)	$\mathrm{O} 12{ }^{\text {vii }}-\mathrm{Col}-\mathrm{O} 12{ }^{\text {viii }}$	77.5 (4)
O11 ${ }^{\text {ii }}$-Col-O11 ${ }^{\text {vi }}$	80.7 (3)	$\mathrm{O} 11^{\text {iv }}-\mathrm{Pl}-\mathrm{O} 12^{2}$	112.6 (4)
$\mathrm{O} 11^{\text {ii }}$ - $\mathrm{Col}-\mathrm{O} 12{ }^{\text {vi }}$	92.7 (3)	$\mathrm{O} 11^{\mathrm{iv}}-\mathrm{Pl}-\mathrm{O} 14^{\text {iv }}$	104.5 (5)
$\mathrm{Ol1} 1^{\mathrm{ii}}-\mathrm{Col}-\mathrm{O} 12^{\text {vii }}$	159.0 (4)	$\mathrm{O} 12^{\mathrm{iv}}-\mathrm{Pl}-\mathrm{O} 12^{\mathrm{ix}}$	111.8 (5)
$\mathrm{O} 11^{\text {ij }}-\mathrm{Col}-\mathrm{O} 12^{\text {viii }}$	81.9 (4)	$\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Pl}-\mathrm{O} 14^{\text {iv }}$	107.4 (4)
O11 ${ }^{\text {vi }}-\mathrm{Col}-\mathrm{Ol} 2^{\text {vi }}$	159.0 (4)	$\mathrm{P} 1-\mathrm{O} 4^{\text {iv }}-\mathrm{Pl}^{\text {a }}$	180

Symmetry codes: (i) $x, y, z-1$; (ii) $x, y-\frac{1}{2}, z-\frac{1}{2}$; (iii) $1-x, \frac{1}{2}-y,-\frac{1}{2}-z$; (iv) $x, \frac{1}{2}+y, z-\frac{1}{2}$; (v) $x-1, y, z-1$; (vi) $1-x,-\frac{1}{2}-y, \frac{1}{2}-z$; (vii) $x,-\frac{1}{2}-y, z-\frac{1}{2}$; (viii) $1-x, y, 1-z$; (ix) $x-1,-y, z-1$; (x) $-x, y, 1-z$.
Data collection: Syntex Nicolet P3 data collection package. Variable scan rate with a scan width of 1.2% below $K \alpha_{1}$ and 1.2° above $K \alpha_{2}$ to a maximum 2θ value of 60°. Cell refinement: Syntex Nicolet P3 data collection package. Data reduc-
tion: DREAM (Blessing, 1986). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: $X R A Y$ (Stewart, 1978). Molecular graphics: CHEM3D (Rubenstein \& Rubenstein, 1987).

The authors express their thanks to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation, and to the MoroccanAmerican Commission for a Fulbright grant to EMH.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71727 (8 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR1056]

References

Blessing, R. H. (1986). Crystallogr. Rev. 1, 3-58.
Calvo, C. (1968). Bull. Soc. Chim. Fr. pp. 1744-1747.
Forsyth, J. B., Wilkinson, C., Paster, S. \& Wanklyn, B. M. (1989). J. Phys. Condens. Matter, 1, 169-178.
Krishnamachari, N. \& Calvo, C. (1972). Acta Cryst. B28, 2883-2885.
Łukaszewicz, K. (1967). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 47-51.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Masse, B., Guitel, A. \& Durif, A. (1979). Mater. Res. Bull. 14, 337-341.
Pietraszko, A. \& Łukaszewicz, K. (1968). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 16, 183-187.
Robertson, B. E. \& Calvo, C. (1967). Acta Cryst. 22, 665-672.
Robertson, B. E. \& Calvo, C. (1968). Can. J. Chem. 46, 605-612.
Rubenstein, M. \& Rubenstein, S. (1987). CHEM3D. The Molecular Modeling System. Cambridge Scientific Computing, Inc., Cambridge, Massachusetts, USA.
Stefanidis, T. \& Nord, A. G. (1984). Acta Cryst. C40, 1995-1998.
Stewart, J. M. (1978). Editor. The XRAY System of Crystallographic Programs. (Version of 1980.) Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1994). C50, 484-487

Isomorphous Crystals: $\mathbf{K}_{\mathbf{2}} \mathbf{H P O}_{\mathbf{4}}$ and $\mathrm{K}_{5} \mathrm{Na}\left(\mathrm{HPO}_{4}\right)_{3}$

Tadeusz Lis

Institute of Chemistry, University of Wroclaw, ul. Joliot-Curie 14, 50-383 Wroctaw, Poland
(Received 1 July 1993; accepted 8 October 1993)

Abstract

The crystals of dipotassium hydrogenphosphate, $\mathrm{K}_{2}-$ HPO_{4}, are almost isomorphous with crystals of pentapotassium sodium tris(hydrogenphosphate), $\mathrm{K}_{5} \mathrm{Na}-$

$\left(\mathrm{HPO}_{4}\right)_{3}$. In both, the three crystallographically independent HPO_{4}^{2-} anions are held together by $\mathrm{Ol} 1-$ $\mathrm{H} 11 \cdots \mathrm{O} 33$ and $\mathrm{O} 31-\mathrm{H} 31 \cdots \mathrm{O} 23$ hydrogen bonds, forming chains. These chains are joined by symmetryrelated hydrogen bonds, $\mathrm{O} 24-\mathrm{H} 24 \cdots \mathrm{O} 21^{i}$ and $\mathrm{O} 21-$ $\mathrm{H} 21 \cdots{ }^{2} 4^{\text {ii }}$ in $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and $\mathrm{K}_{5} \mathrm{Na}\left(\mathrm{HPO}_{4}\right)_{3}$, respectively, forming infinite helical chains running parallel to the c axis. The K^{+}cations have different numbers of neighbours (from six to eleven) and the Na^{+}cations are sixcoordinated. The $\mathrm{P}-\mathrm{O}(\mathrm{H})$ distances range from 1.596 (5) to 1.625 (3) \AA and the $\mathrm{P}-\mathrm{O}($ terminal) distances range from 1.502 (3) to 1.536 (3) \AA.

Comment

Usually dipotassium hydrogenphosphate crystallizes from an aqueous solution in three forms depending on temperature (Gałecki, 1964). It crystallizes as a hexahydrate ($\mathrm{K}_{2} \mathrm{HPO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$) below 287 K , as a trihydrate $\left(\mathrm{K}_{2} \mathrm{HPO}_{4} .3 \mathrm{H}_{2} \mathrm{O}\right)$ in the temperature range $287-322 \mathrm{~K}$, and as an anhydrate ($\mathrm{K}_{2} \mathrm{HPO}_{4}$) above 322 K . Only the crystal structure of the trihydrate salt has been determined previously (Baran, Lis \& Ratajczak, 1989). In this paper the structure of the anhydrous salt and the isomorphous $\mathrm{K}_{5} \mathrm{Na}\left(\mathrm{HPO}_{4}\right)_{3}$ salt are reported.

The crystal of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ consists of three crystallographically independent HPO_{4}^{2-} anions and K^{+}cations. The crystallographically independent HPO_{4}^{2-} anions are held together by $\mathrm{O} 11-\mathrm{H} 11 \cdots \mathrm{O} 33$ and $\mathrm{O} 31-\mathrm{H} 31 \cdots \mathrm{O} 23$ hydrogen bonds. These chains are joined by symmetryrelated $\mathrm{O} 24-\mathrm{H} 24 \cdots \mathrm{O} 21^{i}$ hydrogen bonds to form infinite chains running parallel to the c axis. The crystal structure of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and the numbering scheme are shown in Fig. 1, views of the structure of $\mathrm{K}_{5} \mathrm{Na}\left(\mathrm{HPO}_{4}\right)_{3}$ are presented in Figs. 2 and 3, and data for the hydrogen bonds for both crystals are summarized in Table 5 .

Fig. 1. The crystal structure and numbering scheme of $\mathrm{K}_{2} \mathrm{HPO}_{4}$.

